132 research outputs found

    The Magic Angle "Mystery" in Electron Energy Loss Spectroscopy: Relativistic and Dielectric Corrections

    Full text link
    Recently it has been demonstrated that a careful treatment of both longitudinal and transverse matrix elements in electron energy loss spectra can explain the mystery of relativistic effects on the {\it magic angle}. Here we show that there is an additional correction of order (Zα)2(Z\alpha)^2 where ZZ is the atomic number and α\alpha the fine structure constant, which is not necessarily small for heavy elements. Moreover, we suggest that macroscopic electrodynamic effects can give further corrections which can break the sample-independence of the magic angle.Comment: 10 pages (double column), 6 figure

    Casimir forces on a silicon micromechanical chip

    Full text link
    Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, utilization of Casimir forces on the chip level remains a major challenge because all experiments so far require an external object to be manually positioned close to the mechanical element. Here, by integrating a force-sensing micromechanical beam and an electrostatic actuator on a single chip, we demonstrate the Casimir effect between two micromachined silicon components on the same substrate. A high degree of parallelism between the two near-planar interacting surfaces can be achieved because they are defined in a single lithographic step. Apart from providing a compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes

    Electrical detection of magnetic skyrmions by non-collinear magnetoresistance

    Full text link
    Magnetic skyrmions are localised non-collinear spin textures with high potential for future spintronic applications. Skyrmion phases have been discovered in a number of materials and a focus of current research is the preparation, detection, and manipulation of individual skyrmions for an implementation in devices. Local experimental characterization of skyrmions has been performed by, e.g., Lorentz microscopy or atomic-scale tunnel magnetoresistance measurements using spin-polarised scanning tunneling microscopy. Here, we report on a drastic change of the differential tunnel conductance for magnetic skyrmions arising from their non-collinearity: mixing between the spin channels locally alters the electronic structure, making a skyrmion electronically distinct from its ferromagnetic environment. We propose this non-collinear magnetoresistance (NCMR) as a reliable all-electrical detection scheme for skyrmions with an easy implementation into device architectures

    Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices

    Full text link
    We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations.Comment: 7 pages, 5 figure

    Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible) more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation.</p> <p>Results</p> <p>A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease) the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place.</p> <p>Conclusion</p> <p>The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N) in conventional pairwise Van der Waals interactions.</p

    From Luttinger to Fermi liquids in organic conductors

    Full text link
    This chapter reviews the effects of interactions in quasi-one dimensional systems, such as the Bechgaard and Fabre salts, and in particular the Luttinger liquid physics. It discusses in details how transport measurements both d.c. and a.c. allow to probe such a physics. It also examine the dimensional crossover and deconfinement transition occurring between the one dimensional case and the higher dimensional one resulting from the hopping of electrons between chains in the quasi-one dimensional structure.Comment: To be published In the book "The Physics of Organic Conductors and Superconductors", Springer, 2007, ed. A. Lebe

    Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures

    Full text link
    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometer size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetisation at the nanoscale. To date, chiral skyrmion structures have been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films and under external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero applied magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral N\'eel internal structure which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.Comment: Submitted version. Extended version to appear in Nature Nanotechnolog

    Magnetic Modulation in Mechanical Alloyed Cr1.4fe0.6o3 Oxide

    Get PDF
    We have synthesized Cr1.4Fe0.6O3 compound through mechanical alloying of Cr2O3 and Fe2O3 powders and subsequent thermal annealing. The XRD spectrum, SEM picture and microanalysis of EDAX spectrum have been used to understand the structural evolution in the alloyed compound. The alloyed samples are matching to rhombohedral structure with R3C space group. The observation of a modulated magnetic order confirmed a systematic diffusion of Fe atoms into the Cr sites of lattice structure. A field induced magnetic behaviour is seen in the field dependence of magnetization data of the annealed samples. The behaviour is significantly different from the mechanical alloyed samples. The experimental results provided the indications of considering the present material as a potential candidate for opto-electronic applications.Comment: 8 figure

    Chiral superconductivity from repulsive interactions in doped graphene

    Get PDF
    Author Manuscript 17 Sep 2011Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity
    corecore